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ABSTRACT: This paper presents the investigation of a family of simply periodic orbits around the moon of the Mars, for 

which we have considered the circular restricted three body problem where one of the primaries is taken as Mars and other 

one as moon of the Mars (Phobos) and third infinitesimal body as satellite and also both primaries are taken as oblate. We 

have considered the effect of Poynting-Robertson drag from one of the primaries (Mars) to the satellite. We have evaluated 

the equations of motion of the satellite under the effect of P-R drag and oblateness. We also have plotted the equilibrium 

points, periodic orbits, zero-velocity curves, Poincare surfaces of section and finally the basins of attraction for the different 

values of oblatenes and mass reduction factor. It is observed that we got atmost five equilibrium points which are moving on 

the variation of the perturbing factors, the orbits are periodic, the zero-velocity curves are different for the different 

perturbations, the Poincare-surfaces of section occurred variations on the variation of the perturbing factors and finally in 

the basins of attraction, we got different color code for the equilibrium points on the  variation of the perturbing  factors. 
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1. INTRODUCTION 
Last many decades the restricted problem was  the attractive 

problem for scientists especially in physics, astronomy and 

mathematics. During the study of these problems, they have 

considered many perturbations like oblateness, solar 

radiation pressure, drags, variation of masses, yarkovsky 

effect, albedo, Coriolis and centrifugal forces etc. This 

problem is significant in various fields, particularly to the 

field of astrodynamics, astronomy and astrophysics. Many 

researchers studied on restricted three-body problem like 

Radzievskii [1], Bhatnagar [2], Sharma [3], Singh [4, 5], 

Simmons [6], Kumar [7], Hadjidemetriou [8], Ragos [9], 

Hallan [10, 12], Kalvouridis [11], Raheem [13], 

Baltagiannis [14], Zhang [15], Abouelmagd [16], Jain [17], 

Mishra [18], Ansari [19] etc. have studied in the restricted 

problem with perturbations. The restricted problem has 

helped in determining the families of simple periodic orbits, 

nature of the stability around the hyperbolic Lyapunov 

periodic orbits, stability of the libration points etc.  

Taking on consideration, we have investigated the family of 

simply periodic orbits around moon of the Mars. Here we 

have considered the restricted three body problem as a 

model where one of the primaries is considered as oblate 

Mars, other one as  oblate moon of the Mars (Phobos) and 

infinitesimal body as satellite. All the numerical values have 

been taken from  Zamaro [20]. 

This paper contains four sections considering introduction 

as first section. In the second section, we have determined 

the equations of motion of the satellite. In the third section, 

we have done all the computational work. And finally in the 

fourth section, we have concluded the problem. 

2. EQUATIONS OF MOTION 

Let there be three masses 
1 2,  and m m m (

1 2m m ). Here 

m1, m2 and m are considered as the masses of oblate Mars, 

oblate moon of Mars (Phobos) and satellite respectively 

with oblateness factors σ1 (Mars) and σ2 (Phobos), and also 

the effect of Poynting-Robertson drag (FPRD) is taken from 

Mars to satellite. The line joining the masses 1 2andm m
 

has been chosen as ξ-axis. They revolve in circular orbits 

with the angular velocity ' '  without rotation about their 

common Centre of mass O which has been taken as origin 

and the line perpendicular to ξ-axis through origin in the 

plane of motion of the primaries is taken as η-axis. The line 

through origin and perpendicular to the plane of motion of 

the primaries is taken as ζ-axis. Let us consider a synodic 

system of coordinates, initially coincident with the inertial 

system, rotating with angular velocity   about ζ-axis.
 

We, now assume that 2

1 2

m

m m



 

and choose units of 

mass, length and time such that
1 2 1m m  , 

(distance between the primaries) 1l  and G = 1 

respectively. Let masses
2m   and hence

1 1m   . The 

co-ordinates of the locations of the masses are (μ, 0, 0) 

(Mars), (-(1- μ), 0, 0) (Phobos) and (ξ, η, ζ) (satellite). 

Therefore, the equations of motion of satellite in the non-

dimensional variables are 
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Figure-1: Geometry of the problem. 

 

2 ,PRDn U F       ,  

2 ,PRDn U F       , 

.PRDU F                             (1) 
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1q is mass reduction factor and 
2 3

1 22
(1 ( )).n      

 

3. COMPUTATIONAL WORKS 

In this section, we have plotted equilibrium points, periodic 

orbits, zero-velocity curves, Poincare surfaces of section and 

the basins of attraction for the different values of oblateness 

and the mass reduction factor through Mathematica software 

(m1 = 6.42*10
23

, σ1 = 0.00196 (Mars), m2 = 1.07*10
16

 , σ2 = 

0.105 (Phobos)) (Zamaro [20]). 

     

3.1 Equilibrium Points 

We can find the equilibrium points from equation (1) by  

putting 0, 0, 0,          
 

i.e.    0, 0, 0.       
 

3.1.1 Equilibrium Points during in-plane motion 

( , , 0).      

In this plane, we have drawn the equilibrium points in two 

cases. Firstly the variation of oblatenes (Figure 2(a)) and 

secondly, the variation of mass reduction factor (Figure 

2(b), (c)). From the figure 2(a), we observed that as we 

increase the values of oblateness, the points move toward 

the origin and from the figure 2(b, c), as we increase the 

values of mass reduction factor, the points move away from 

the origin. In all the figures, orange points denote the 

locations of the primaries. 

 

 
Figure 2(a): Equilibrium points with the variations of 

oblateness (σ1 = 0, σ2 = 0 (red), σ1 = 0.00196, σ2 = 0.105 (black)). 

 

 
 

(b) 
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Figure 2: (b) equilibrium points at q1=0 (red), (c) equilibrium 

points at q1=0.25 (black), q1=0.50 (magenta), q1=0.75 (purple). 

 

3.1.2 Equilibrium Points during out of plane motion 

( , 0, ),( 0, , ).         

In these planes, we have got the same pattern, ie. When we 

increase the values of oblateness, the equilibrium points 

move towards the origin (Figure 3(a), 4(a)) and after 

increase the values of mass reduction factor, the equilibrium 

points move away from the origin (Figure 3(b, c), 4(b)). 

 

  
Figure 3(a): Equilibrium points with the variations of 

oblateness (σ1 = 0, σ2 = 0 (red), σ1 = 0.00196, σ2 = 0.105 (black)). 

 

 
Figure 3: (b) equilibrium points at q1=0 (red), (c) equilibrium 

points at q1=0.25 (black), q1=0.50 (magenta), q1=0.75 (purple).  

 
Figure 4(a): Equilibrium points with the variations of 

oblateness (σ1 = 0, σ2 = 0 (red), σ1 = 0.00196, σ2 = 0.105 (black)). 

 

 

(b) (c) 

(c) 
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Figure 4: (b) equilibrium points at q1=0 (red), q1=0.25 (black), 

q1=0.50 (magenta), q1= 0.75 (purple). 

 

3.2. Periodic Orbit 

We have drawn the periodic orbits for the variations of 

oblateness and mass reduction factor and found the periodic 

orbits in all the cases. In figures 5(a) and 5(b), we got exotic 

quasi-periodic orbits and also observed that when we 

increase the values of oblateness factor, the time period of 

the periodic orbits reduce. In figure 5(c), we got simply 

periodic orbits except the case when q1 = 0.75 (in this case, 

we got doubly periodic orbits (purple)) and observed that 

when we increase the values of the mass reduction factor, 

the periodic orbits shrink. 

 

 
Figure 5(a): Exotic quasi-periodic orbits without oblateness (σ1 

= 0, σ2 = 0 (red)). 

 

 
    Figure 5(b): Exotic quasi-periodic orbits with oblateness 

                  (σ1 = 0.00196, σ2 = 0.105 (black)). 

 

 

 
Figure 5(c): Periodic orbits with the variations of mass 

reduction factor (q1=0 (red)(simply periodic orbits), q1=0.25 

(black) (simply periodic orbits), q1=0.50 (magenta) (simply 

periodic orbits), q1=0.75 (purple) (doubly periodic orbits)). 

 

3.3. Zero-velocity curves 

We have drawn the zero velocity curves for the variations of 

oblateness and mass reduction factor and found the different 

curves for the different values of perturbations (Figures 6(a, 

b, c, d, e, f)). 
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Figure 6(a): Zero velocity curves without oblateness 

(σ1 = 0, σ2 = 0, q1 = 1). 

 

 
Figure 6(b): Zero velocity curves with oblateness 

(σ1 = 0.00196, σ2 = 0.105, q1 = 1). 

 

 
Figure 6(c): Zero velocity curves without mass reduction factor  

(q1 = 0, σ1 = 0.00196, σ2 = 0.105). 

 

 
Figure 6(d): Zero velocity curves with mass reduction factor 

(q1 = 0.25, σ1 = 0.00196, σ2 = 0.105). 
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Figure 6(e): Zero velocity curves with mass reduction factor 

(q1 = 0.50, σ1 = 0.00196, σ2 = 0.105). 

 

 

 
Figure 6(f): Zero velocity curves with mass reduction factor 

(q1 = 0.75, σ1 = 0.00196, σ2 = 0.105). 

 

3.4. Poincare surfaces of section 

We have drawn the Poincare surfaces of section for the variations 

of oblateness and mass reduction factor and found the different 

curves for the values of perturbations. (Figures 7(a, b, c)). From 

figure 7(a), we observed that as we increase the values of 

oblateness, the surfaces of section expand. From figure 7(b), we 

observed that, for the small mass reduction factor, the surfaces of 

section have very large plane and appear as discrete type. From 

figure 7(c), we observed that as we increase the values of mass 

reduction factor the surfaces of section expand. 

 

 

 
Figure 7(a): Poincare surfaces of section with the variations of 

oblateness (σ1 = 0, σ2 = 0, q1 = 1 (Red)), (σ1 = 0.00196, σ2 = 

0.105, q1 = 1 (Black)). 

 

 
Figure 7(b): Poincare surfaces of section with the variations of 

mass reduction factor (σ1 = 0.00196, σ2 = 0.105, q1 = 0 (Red)), 

(σ1 = 0.00196, σ2 = 0.105, q1 = 0.25 (Black)). 

 

 
Figure 7(c): Poincare surfaces of section with the variations of 

mass reduction factor (σ1 = 0.00196, σ2 = 0.105, q1 = 0.50 

(Magenta)), (σ1 = 0.00196, σ2 = 0.105, q1 = 0.75 (Purple)). 

 

3.5. Basins of Attraction 

In this section, we have drawn the basins of attraction for 

the variations of oblateness and mass reduction factor by  

using the simple and accurate Newton-Raphson iterative 

method for solving systems of equation. This method is also 

applicable for systems of multivariate functions. The 

iterative algorithm of our problem is given by the system   
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Where 1 1,n n   are the values of the  and coordinates 

of the (n-1)th step of the Newton-Raphson iterative process. 

The initial point ( , )  is a member of the basin of 

attraction of the attractor if this point converges rapidly to 

one of the equilibrium points. This process stops when the 

successive approximation converges to an attractor, with 

some predefined accuracy.  For the classification of the 

equilibrium points on the ( , )  plane, we will use color 

code. In this way a complete view of the basin structures 

created by the attractors. (Figures (8, 9, 10, 11, 12, 13)) 

We can observe in detail from the zoomed part of all the 

figures in Fig. 8(b), Fig. 9(b), Fig. 10(b), Fig. 11(b), Fig. 

12(b), Fig. 13(b). The red points and orange points denote 

the locations of the lagrangian points and the primaries 

respectively. 

 

 

 
Figure 8(a): Basins of attraction without oblateness (σ1 = 0, σ2 = 

0, q1 = 1). 

 

 

 
Figure 8(b): Zoomed part of figure 8(a) near the primaries. 

 

 

 
Figure 9(a): Basins of attraction with oblateness (σ1 = 0.00196, 

σ2 = 0.105, q1 = 1). 
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Figure 9(b): Zoomed part of figure 9(a) near the primaries. 

 

 

 
Figure 10(a): Basins of attraction without mass reduction 

factor (σ1 = 0.00196, σ2 = 0.105, q1 = 0). 

 

 

 

 
Figure 10(b): Zoomed part of figure 10(a) near the primaries. 

 

 

 

 
Figure 11(a): Basins of attraction with the mass reduction 

factor (σ1 = 0.00196, σ2 = 0.105, q1 = 0.25). 
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Figure 11(b): Zoomed part of figure 11(a) near the primaries. 

 

 

 
Figure 12(a): Basins of attraction with the mass reduction 

factor (σ1 = 0.00196, σ2 = 0.105, q1 = 0.50). 

 

 

 

 
Figure 12(b): Zoomed part of figure 12(a) near the primaries. 

 

 

 

 
Figure 13(a): Basins of attraction with the mass reduction 

factor (σ1 = 0.00196, σ2 = 0.105, q1 = 0.75). 
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Figure 13(b): Zoomed part of figure 13(a) near the primaries. 

 

4 CONCLUSION AND DISSCUSSION 
We have investigated the family of simply periodic orbits 

around the moon of Mars (Phobos). For this we have 

considered the circular restricted three body problem in 

which one of the primaries is taken as oblate Mars, other 

one as oblate moon of the Mars (Phobos) and third 

infinitesimal body is taken as satellite.   We have taken the 

effect of P-R drag from Mars to satellite. By using the 

equations of motion, we have drawn the equilibrium points 

in and out-of-plane and observe that these points are moving 

with the variations of oblateness and mass reduction factor. 

On the other hand, we found the exotic quasi periodic orbits, 

doubly periodic orbits and simply periodic orbits. In the 

zero velocity curves the satellite will move only in the 

particular region of the whole region. In the Poincare 

surfaces of section, we got the variations with the variations 

of perturbing factor. And finally, we have plotted the basins 

of attraction for this problem by using Newton Raphson 

iterative method through Mathematica software and found 

different color code for different equilibrium points. It can 

be clearly seen in zoomed part of all the figures. 

In this way, reader can get very much interesting infor 

mation about the motion of the satellite around the moon of 

Mars.   
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